
1. SAFe Distilled . 2
1.1 Ch 1: Business Need for SAFe . 2
1.2 Ch 2: SAFe Overview . 2
1.3 Ch 3: Lean-Agile Mindset . 6
1.4 Ch 4: SAFe Principles . 7
1.5 Ch 5: Lean-Agile Leaders . 10
1.6 Ch 6: The Agile Release Train . 12
1.7 Ch 7: Planning a Program Increment . 13
1.8 Ch 8: Iterating . 17
1.9 Ch 9: Executing the Program Increment . 19
1.10 Ch 10: Inspect and Adapt . 23
1.11 Ch 11: Large Solution SAFe Overview . 26
1.12 Ch 12: Defining Large and Complex Solutions . 27
1.13 Ch 13: Solution Train Execution . 31
1.14 Ch 14: Lean Portfolio Management . 32
1.15 Ch 15: Strategy and Investment Funding . 34
1.16 Ch 16: Agile Portfolio Operations . 35
1.17 Ch 17: Lean Governance . 36
1.18 Ch 18: The Guiding Coalition . 37
1.19 Ch 19: Designing the Implementation . 38
1.20 Ch 20: Implementing Agile Release Trains . 39
1.21 Ch 22: Sustaining and Improving . 43
1.22 Ch 21: Launching More ARTs and Value Streams . 44

SAFe Distilled

The following are summary notes for the book .SAFe 4.5 Distilled: Applying the Scaled Agile Framework for Lean Enterprises (2nd Edition)

Ch 1: Business Need for SAFe

Ch 2: SAFe Overview

Ch 3: Lean-Agile Mindset

Ch 4: SAFe Principles

Ch 5: Lean-Agile Leaders

Ch 6: The Agile Release Train

Ch 7: Planning a Program Increment

Ch 8: Iterating

Ch 9: Executing the Program Increment

Ch 10: Inspect and Adapt

Ch 11: Large Solution SAFe Overview

Ch 12: Defining Large and Complex Solutions

Ch 13: Solution Train Execution

Ch 14: Lean Portfolio Management

Ch 15: Strategy and Investment Funding

Ch 16: Agile Portfolio Operations

Ch 17: Lean Governance

Ch 18: The Guiding Coalition

Ch 19: Designing the Implementation

Ch 20: Implementing Agile Release Trains

Ch 22: Sustaining and Improving

Ch 21: Launching More ARTs and Value Streams

Ch 1: Business Need for SAFe

No company can make, deliver, or market its product efficiently without technology

Adaptation is essential, or you’ll go extinct

Challenges… maintaining existing things, defense against attackers, theft of IP, bigger, more complicated, more integrated, bigger
impact, failure has broader consequences, tech skills keep expanding

Outsourcing challenges… delayed communication, dependency on others, loss of internal capabilities, quality, regulatory compliance

W.E. Deming said the problems are usually problems, not poor performance of peoplesystem

Previous systems were built for , not innovation and speedcontrol and stability

New bodies of knowledge
Agile development – lightweight development processes; manifesto defined the philosophy

Systems thinking – set of interrelated elements; two systems (one for the customer’s benefit, the other constituting the org that
builds it)

Lean product development – Lean thinking (Toyota Production System and Total Quality Management) + product development
flow; principles… eliminate waste/delays, maximize customer value, reduce lead time, high quality, sustainable flow (batch size,
WIP limits, etc.), respect, using MVPs, continuous improvement (kaizen), top-down buy-in

Benefits
Quality – defect rates, expenses caused by flawed products, client dissatisfaction

Productivity

Employee engagement

Faster time-to-market

Program execution – predictability, on-time delivery

Alignment

Transparency

Ch 2: SAFe Overview

The purpose is to align, collaborate, and deliver over across multiple teams.

Essential SAFe

https://www.amazon.com/SAFe-4-5-Distilled-Framework-Enterprises/dp/0135170494

(Source:)https://www.scaledagileframework.com/essential-safe/

Agile Release Train (ART) – multiple Agile teams, key stakeholders together to pursue an ongoing solution mission (shared vision,
roadmap, and backlog); delivers features (things users want) and enablers (technical infrastructure) to do this

Team iterations are synchronized by start/end dates (usually two weeks) to deliver finished increments

Program Increment – longer, fixed timeboxes for planning, execution, inspection, adaptation

Need a continuous delivery pipeline; DevOps helps to plan, develop, test, deploy, release, and maintain the system

Key roles
System Architect – define the overall architecture, non-functional requirements (NFRs), critical subsystems; uses systems
thinking

Product Manager – internal voice of the customer, owns the program backlog (features and enablers); bridge between
customers and Product Owners

Release Train Engineer – chief Scrum Master for the ART; sets up practices, planning, etc.

Business Owners – primary business expertise, know about compliance, ROI

Customers – deciders of value

Essential elements
Lean-agile principles

Real agile teams and trains

Cadence and synchronization

Program increment planning

DevOps and releasability

System demo

Inspect and adapt (I&A)

Innovation and planning (IP) iteration

Architectural runway

Lean-agile leadership (leaders actively participate and take responsibility for the implementation)

Portfolio SAFe

https://www.scaledagileframework.com/essential-safe/

(Source:)https://www.scaledagileframework.com/portfolio-level/

Additional elements
Lean budgets – fast, empowered decision-making

Value streams – series of steps used to build product

Portfolio kanban

Key roles
Lean Portfolio Manager – high-level decisions, strategy, investment funding, Agile operations, Lean governance

Epic Owner – coordinate portfolio epics

Enterprise Architect – person or team that works across teams

Large Solution SAFe

https://www.scaledagileframework.com/portfolio-level/

(Source:)https://www.scaledagileframework.com/large-solution-level/

Additional elements
Solution train – aligns people and work with a common solution vision, mission, and backlog

Supplier – development of components and subsystems

Economic framework – financial boundaries

Solution context – how the system is packaged/deployed

Solution Kanban – flow of capabilities and enablers

Key roles
Solution Architect/Engineer – person or team that sets technical vision for the solution

Solution Management – creates solution vision, backlog, roadmap, defines requirements, guides work through solution Kanban

Solution Train Engineer – facilitates work of all ARTs and suppliers

Full SAFe

https://www.scaledagileframework.com/large-solution-level/

(Source:)https://www.scaledagileframework.com/#

This level combines all the others and allows multiple SAFe configurations.

Spanning Palette (what all versions have)

Metrics – measure throughout and at PI planning

Shared Services – specialty roles that can't be dedicated full time to any train

Community of Practice (CoP) – group of experts who have some practical knowledge

Milestones – fixed date, program increment, learning milestones

Roadmap – planned deliverables on a timeline

Vision – future view of the solution (customer needs, features, capabilities)

System Team – builds the Agile dev environment, CI, test automation

The Foundation

Lean-agile leaders – lead and train others in ways of thinking; lifelong learners, apply and embrace principles and practices

Core values
Alignment – everyone knows the strategy and where they fit

Quality – poor quality doesn't scale; you need customer satisfaction and predictable delivery

Transparency – builds trust, which leads to performance, innovation, risk-taking, relentless improvement

Execution – minimal overhead to create stable, long-lived teams

Lean-agile mindset – beliefs, assumptions, actions of leaders

SAFe principles – (coming later in the book)

SAFe implementation roadmap – how to implement SAFe

SAFe program consultants – change agents who know SAFe and want to improve systems development

Ch 3: Lean-Agile Mindset

https://www.scaledagileframework.com/

Thinking Lean

Goal: Value
Deliver max value in the shortest sustainable lead time

High quality to customers and society

Other goals... high morale, emotional safety, physical safety, customer delight

Respect for People and Culture
People do the actual work, not the system

Learn problem-solving skills and reflection skills

Not just employees... suppliers, partners, customers, community

Flow
Continuous flow of incremental value delivery based on feedback and tuning

Understand the full value stream

Visualizing and limiting WIP

Reduce batch sizes

Manage queue lengths

Focus on reducing delays and eliminating waste

Innovation
Gemba walks around where the work is happening; "No useful improvement was ever invented at a desk." (Taiichi Ohno)

Provide regular time/space for people to be creative

Avoid the tyranny of the urgent. You can't innovate if 100% on firefighting

Apply innovation accounting to see if things are working

Validate new ideas; pivot without mercy or guilt

Relentless Improvement
Optimize for the whole org, not just the dev parts

Consider facts carefully, then act quickly

Find root causes and apply countermeasures

Reflect during milestones

Foundation: Leadership
Top management owns the process

Train them to lead by example

Embracing Agility

Teams should be self-managing and self-organizing

Need authority and autonomy to plan, execute, decide, adapt

Teams monitor their own progress, solve problems together, improve their processes

Although independent, they must align with management on business goals and standards

Values; both sides are important
Individuals and interactions > processes and tools

"If you can't describe what you are doing as a process, then you don't know what you are doing." (Deming) This means
processes like Scrum, Kanban, etc. do matter. Tools like chat, wikis, etc. do matter.

Working software > comprehensive documentation
Only document what's necessary; no documentation for its own sake

Customer collaboration > contract negotiation
Continuous feedback from the customer

Win/lose contracts lead to poor economic outcomes and distrust

Responding to change > following a plan
There is a plan, but change is inevitable

There is no end-state for finding better ways

Ch 4: SAFe Principles

Principle 1: Take an Economic View

Deliver incrementally, early, and often
Customers get continually growing value instead of "big bang" value at the end with waterfall

Mitigates risk by getting feedback more often

Sequence jobs for maximum benefit

Reprioritize work continuously depending on economic/technical facts known at the time

Weighted Shortest Job First (WSJF) means picking the next task that delivers the most value in the shortest amount of time
WSJF = cost of delay / job size

Cost of delay = user or business value + time criticality + risk reduction or opportunity enablement

Don't need $$ values for these, as those can take too much overhead to compute; make them relative

Job is harder to find (how long will it take to build something you've never built), which is why relative size is duration
usually best

Feature User or business value Time criticality Risk reduction -or-

opportunity enablement

Cost of delay Job size Weighted shortest job first

+ + = / =

+ + = / =

Scale for each parameter: 1, 2, 3, 5, 8, 13, 20

Do one column at a time. Start by picking the smallest item and giving it a “1”.

There must be at least one “1” in each column (e.g., some feature has the lowest cost of delay or lowest job size)

The highest priority is the highest WSJF

Principle #2: Apply Systems Thinking

Deming: “A system must be managed.”

The solution (e.g., website, medical device) is a system
Know what’s in it, where the boundaries are, how it interacts with other things

Optimizing the part does not necessarily optimize the whole

Intentional design is fundamental

The value of a system passes through its interconnections

A system can evolve no faster than its slowest integration point

The org is a system, too
If you don’t manage this, subsystems will optimize greedily causing problems elsewhere

Building complex systems is social. Leaders must create environments for collaboration to happen.

Treat suppliers and customers as partners to build trust

Understand the full value stream
This is the only way to reduce the total time from concept to cash

Value stream mapping is the tool

Only management can change the system
Systematic problem solving

Take the long view

Proactively eliminate impediments

Lead org changes

Principle #3: Assume Variability, Preserve Options

Point-based design (most common): pick one solution/technology quickly and modify the design until the system is built

Set-based design: pick several flexible options, eliminate weaker options over time

(Geoff’s distillation: consider many options, choose based on flexibility/adaptability because change is inevitable.)

Principle #4: Build Incrementally with Fast, Integrated Learning Cycles

Not well defined in the book…

Integration points could mean seams where different components connect – database, API, third-party service – where stuff goes in
and out of a component.

It could also mean integrating changes into the entire system. If you can’t change quickly, you can’t learn quickly either.

It could also be the connections between components in your larger system. Example: job that creates data, another job that takes that
data to do something else

Principle #5: Base Milestones on Objective Evaluation of Working Systems

Ship smaller batches of working software more often.

Milestone = program increment

Re-evaluate at each PI what you need to do next based on what you’ve learned from your working system

Principle #6: Visualize and LImit WIP, Reduce Batch Sizes, and Manage Queue Lengths

Too much WIP = multitasking and context switching, overloads people, reduces focus, productivity, and throughput. Visualize it with a
Kanban board

If the batch size is too small, you have higher (planning, implementing, testing). Too high and you’re transaction costs holding costs
(value delivered because you shipped) will be high.

Queue lengths
Long queues are bad -- longer cycle times, increased risk, increased variability, lower motivation

Little’s law -- average wait time = queue length / processing rate

To reduce wait time, (1) shorten the queue, (2) process faster. The second option can only go so far without affecting quality or
burning out.

Principle #7: Apply Cadence; Synchronize with Cross-Domain Planning

“Solution development is an inherently uncertain process. This uncertainty conflicts with the business’s need to manage investment,
track progress, and plan and commit to a longer-term course of action.”

Cadence
Makes waiting times for new work predictable

Supports regular planning and cross-functional coordination

Limits batch sizes to a single interval

Controls injection of new work

Provides scheduled integration points

Synchronization
Facilitates cross-functional trade-offs of people and scope

Aligns all stakeholders

Provides for routine dependency management

Supports integration and assessment of full system

Provides feedback from multiple perspectives

Typically implemented through 2-week sprints, 8-week PIs

PI planning is essential for cross-functional work
Assess the current state of the solution

Realign all stakeholders to a common technical and business vision

Plan and commit teams to the next PI

Principle #8: Unlock the Intrinsic Motivation of Knowledge Workers

"Knowledge workers are people who know more about the work they perform than their bosses." -- Peter Drucker

Managers need to unlock the intrinsic motivation of knowledge workers

Leverage systems thinking -- communicate across functional boundaries, make decisions based on economics, receive fast feedback
about the viability of their solutions, continuous learning/mastery

Understand the role of compensation -- too much money, threats, intimidation, and fear are at odds with ideation, innovation, and
engagement

Create an environment of mutual influence -- disagree when appropriate, advocate for positions you believe in, make needs clear and
push to achieve them, enter into joint problem solving with management and peers, negotiate/compromise/agree/commit

Provide autonomy, mastery, and purpose -- opt toward self-direction, people want to grow in their careers, connect the work to the
enterprise

Principle #9: Decentralize Decision-Making

Complete centralized decision-making is a bottleneck, and lowers empowerment

Centralize
Infrequent decisions (e.g., product strategy)

Long-lasting (e.g., tech platform)

Significant economies of scale (e.g., standard tooling across teams)

Decentralize everything else

Frequent (e.g., backlog priorities for defects)

Time-critical (e.g., hotfixes)

Local information (e.g., resolution of a design problem)

Ch 5: Lean-Agile Leaders

Only the enterprise’s executives, leaders, and managers can change an continuously improve the system in which people work

Exhibit the Lean-Agile Mindset

If you have words but no actions, it won’t work. Leaders must embrace the (value, people/culture, flow, innovation, Ch 3: Lean-Agile Mindset
relentless improvement, agility).

Know the Way and Emphasize Lifelong Learning

(The book recommends leaders take a 2-day course “Leading SAFe” () to help https://www.scaledagile.com/certification/courses/leading-safe/
implement it. It’s about $1000.)

Book recommendations: https://www.scaledagileframework.com/recommended-reading

Other ways leaders can facilitate learning:

Sponsor/participate in book clubs

Host lunch-and-learns

Benchmark with other companies

Support outside conferences and educational opportunities

Develop People

(From by Bradford and Cohen)Managing for Excellence

Leader as Expert

Characteristics Challenges

Technician, master craftsman

Promoted because they were best at their job

Problem solver, the one with the answers

Understands domain and tech

Works when people leave them alone

Limits learning and growth of direct reports

Focuses on tech to the detriment of human factors

Knowledge becomes outdated

Leader as Conductor

Characteristics Challenges

Central decision maker, nerve center, coordinator

Orchestrates individual parts of the org into a harmonious whole

Subtle and indirect manipulation to their solution

Manages across individuals, teams, depts.

Works by coordinating others

Narrows the focus of direct reports to their own areas

Pushes conflict upward, looking for the boss to fix it

Uses systems and procedures to control work

Works harder and harder without realizing full potential

Leader as Developer of People

Behaviors Benefits

https://www.scaledagile.com/certification/courses/leading-safe/
https://www.scaledagileframework.com/recommended-reading

Creates a team jointly responsible for success

Asks, “How can each problem be solved in a way that further develops my people’
s commitment and capabilities?”

Gives credit to the team for success, shoulders responsibility when things go wrong

Shows empathy and support when the team makes mistakes

Creates a learning culture

Fosters an environment that rewards risk-taking and innovation without fear

Works by developing others' abilities

Increased direct report ownership and
responsibility

Increased employee engagement and
motivation

Allows leader to spend more time managing
laterally and upward

No limit to the power of getting things done

Inspire and Align with Mission

Define the mission, and reduce boundaries and conditions for teams to address it. This is the and the (not the , that’s for the team what why how
to decide).

Eliminate demotivating polices/procedures that promote unhealthy competition, encourage favoritism, or cause busywork.

Decentralize Decision-Making

This is Principle 9: https://lirio-llc.atlassian.net/wiki/spaces/~174556444/pages/375717937/Ch+4+SAFe+Principles#Principle-%239%3A-
Decentralize-Decision-Making

Unlock the Intrinsic Motivation of Knowledge Workers

This is Principle 8: https://lirio-llc.atlassian.net/wiki/spaces/~174556444/pages/375717937/Ch+4+SAFe+Principles#Principle-%238%3A-Unlock-
the-Intrinsic-Motivation-of-Knowledge-Workers

Evolve the Development Manager Role

Goal of SAFe: nearly autonomous, cross-functional teams and Agile Release Trains (how stuff gets shipped). Lean infrastructure, empowered
teams to do local decision making.

You still need people managers, though.

Recruiting/retaining talent

Vision and mission alignment

Support built-in quality and Agile engineering processes

Coaching Agile teams

Providing transparency

Serving as business owners

More details: https://www.scaledagileframework.com/lean-agile-leadership/

Adopt a Servant-Leadership Approach

Listening

Empathy

Self-awareness

Persuasion (instead of authority)

Conceptualization (the)why

Stewardship

Commitment to the growth of people

Partnering with HR

More details: https://www.scaledagileframework.com/agile-hr/

Embrace the new talent contract

Foster continuous engagement

Hire for attitude and cultural fit

Move to iterative performance feedback

https://www.scaledagileframework.com/lean-agile-leadership/
https://www.scaledagileframework.com/agile-hr/

Take the issue of money off the table

Support meaningful learning and growth

On the Future of Leadership

Leadership is a task, not a permanent identity

Hyper-transparency of a wide range of information fosters effective leadership and results

Use non-monetary incentives instead of financial rewards

Note: Not sure if this is still in vogue, given these points are from 2008 ()https://hbr.org/2008/05/leaderships-online-labs

Ch 6: The Agile Release Train

Overview

Agile Release Train
long-lived team of teams that develops and delivers solutions incrementally

organized around value streams

Goal: achieving continuous flow of value

Define new functionality Implement Acceptance Test Deploy (repeat)

Principles
Fixed schedule (e.g., PI = 8 weeks), fixed iterations (e.g., sprint = 2 weeks)

Predictable estimate of how much cargo can be delivered each PI

Most people dedicated full-time

Dedicate time for innovation and planning activities

Uses DevOps and Lean UX to get fast feedback and reduce waste

ART Organization

Cross-functional instead of silos

Each team has the skills to effectively deliver a feature with a minimum dependency on others

Goal: faster flow of value with minimum overhead

Roles
Release Train Engineer – servant leader and coach, facilitates ART events, communicates with stakeholders, escalates
impediments, helps manage risk, drives relentless improvement

Product Management – owns what gets built based on vision, roadmap, and current backlog; collaborates with customers and
POs to understand needs and validate solutions

System Architect – defines technical/architectural vision; defines major components, interfaces, non-functional requirements

Business Owner – has business and technical responsibility for governance, compliance, and ROI for the solution; evaluates
solution’s business value and fitness for use

Customer – buys the solution, participates in solution development

System Team – builds the dev environment (CI/CD, testing)

Shared Services – part-time specialists (e.g., data security, information architects, DBAs, tech writers)

Develop on Cadence. Release on Demand.

If you work independently on different schedules with different priorities, it’s difficult to integrate the system routinely

Continuous delivery is ideal, but there may be reasons you can’t do that

Vision

Product communicates the intent and direction of the solution (e.g., what does it do? what problems does it solve and for whom?)

PI planning involves presenting the vision to get people excited and aligned

Features

Feature – larger system behavior that fulfills the user’s needs

Benefit hypothesis – proposed measurable benefit (e.g., reduced planned downtime)

https://hbr.org/2008/05/leaderships-online-labs

Acceptance criteria – tells you how to validate the hypothesis; drives the stories and tests

Program Backlog

Product identifies, prioritizes, and sequences features

Originated from anywhere – customer, Product, PO, architect, etc.

Enabler – work that gives you more runway
Exploration – research/prototype to understand customer needs, explore prospective solutions, and evaluate alternatives

Architecture – focused on smoother and faster development

Infrastructure – build, enhance, and automate the development, testing, and deployment environments

Compliance – compliance-based activities

SMEs come together to size features so they can be prioritized by weighted shortest job first (WSJF)

Roadmap

Consists of anticipated features and other milestones

Owned by Product

Agile Teams Power the Train

People that define, build, test, and deploy

Follows Agile practices like Scrum, XP, Kanban

Estimates and manages its own work

Determines technical design in its area of concern

Commits to the work it can accomplish each iteration/PI

Implements and tests functionality and promotes work to other environments

Supports and/or builds the automation needed to implement the CD pipeline

Continually improves the process and deliverables

Roles
Scrum Master – servant leader, facilitates meetings, fosters Agile behavior, helps remove impediments, interacts with the larger
org, helps the team maintain focus, builds a high-performing and self-managing team

Product Owner – owns the team backlog, defines stories, acts as the customer, prioritizes work, works with Product to plan PIs

Team – individual contributors that do the work, cross-functional

User Stories and the Team Backlog

Not requirements; short, simple descriptions of a small piece of desired functionality told from the user’s perspective

Written in language that explains the intent to business and technical people

“As a <role> I can <activity> so that <business value>”

Ideally acceptance tests line up with the acceptance criteria

Stories can also be enablers (see Program Backlog section above)

Estimating
Story points capture volume, complexity, knowledge, uncertainty

Every story is relative to the smallest story (1 SP); use 1, 2, 3, 5, 8, 13, 20, 40, 100

Techniques: planning poker, white elephant sizing

Velocity – number of points per sprint the team can achieve

Velocity varies per team and for the type of work. ART’s velocity is the sum of all teams

Team backlog
It contains all things the team could do (make work visible)

Owned by the PO

Inputs
Program backlog

Team (e.g., refactor, maintenance, tech debt)

Other stakeholders (e.g., team dependencies, other commitments, spikes/research)

Capacity allocation
Determine how much work should be applied to user stories, refactors, and maintenance

https://www.tastycupcakes.org/2009/09/sizing-game/

Ch 7: Planning a Program Increment

Overview

PI planning is a cornerstone event; it’s about alignment
Teams come together to define and design the system that best fulfills the ART’s vision

Commit to near-term PI objectives

Sense of shared mission, responsibility, cooperation, and collaboration

Responsibility of planning moves from a central authority to the teams who do the work

Usually facilitated by the Release Train Engineer

Preparation for the PI Planning Event

Organizational Readiness

Planning scope and context – do you understand the product, system, or tech domain?

Business alignment – is there agreement on priorities among the Business Owners?

Agile teams – does each team have the resources (dev, testers, Scrum Master, PO)?

(See Chapter 20 – Implementing Agile Release Trains)

Facility Readiness

Facility – need a big enough space, breakout rooms

Technical and communications support – people to help before and during the event

Communication channels – consider how remote attendees will participate

Content Readiness

Executive briefing – senior exec presents the business context

Product/solution vision briefing – Product presents the vision, “top 10 features” in the Program Backlog

Architecture vision briefing – CTO communicates architectural strategy, new enablers, and non-functional requirements

The Role of the Facilitator

Organizes the agenda to ensure people are participating and to keep discussions on track

(SAFe has a two-day planning agenda, which is discussed below)

Day 1: Create and Review Draft Plans

Business Context (1 hr)

Senior exec sets the tone for PI planning by talking about things like performance, strategy, SWOT analysis, customer satisfaction, org
developments, operating plans, etc.

Rally the troops around challenges and opportunities, drive motivation and enthusiasm for the PI and the evolving solution

Product/Solution Vision (1.5 hrs)

Product Manager presents current vision and objectives for the PI, priorities

Architecture Vision and Development Practices (1 hr)

System Architect presents vision for the architecture (new epics for common infrastructure, large-scale refactors, system level NFRs)

Announce any changes to standard development practices, new tools, techniques, built-in quality practices, build pipelines

Team Breakouts (3 hrs)

Teams draft initial plans to grasp scope of priorities necessary for development, resolve dependencies, and understand the potential
reuse for common code.

“It’s an intense and active time.”

All teams have a list of the PI objectives/priorities

Physical:
flip chart paper for each sprint, one for risks, one for IP iteration (we don’t currently do this: https://www.scaledagileframework.

)com/innovation-and-planning-iteration/

stickies for user stories

stickies for maintenance work

stickies for exploration enablers

stickies for infrastructure enablers

stickies for risks & dependencies

Capacity-based planning
New teams: start with 8 SPs per sprint

1 SP = a story that can be completed end-to-end in one day; all other stories are relative to this one

Any story larger than 8 SP should be split

(I disagree with the approach that you make everyone use story points. The book says, “…which is vital for feature and epic-
level estimating and conversion into cost estimates where necessary.” This means SPs are translated into time, which the
originator of the SP said was precisely the opposite of what he intended.)

Hourly Planning Checkpoints
(The book has a “PI Planning Radiator” worksheet where the RTE checks in with each team every hour to verify that specific
things have been done.)

(This seems like considerable overhead for everyone involved. Maybe have a shared Excel file that the teams fill in real-time
that the RTE can watch?)

Draft Plan Review (1 hr)

ART gets together to review each team’s draft plans

Teams give a readout (strict time box)

Business Owners are present

Agenda
Velocity and load (number of points committed to do this PI)

Draft PI objectives

Program risks & impediments

Q&A

Most of the teams can call it a day after this

Management Review and Problem Solving

Who’s here: RTE, Product Manager, System Architect, Business Owners, Scrum Masters, Product Owners, SMEs

Agenda
What did we just learn?

Where do we need to adjust vision, scope, or resources?

Where are the bottlenecks?

What features must be de-scoped?

What decisions must we make between now and tomorrow to address these issues?

Day 2: Finalize Plans and Commit

Planning Adjustments (1 hr)

Read out what was discussed in the “Management Review and Problem Solving” meeting from yesterday

Team Breakouts (2 hrs)

Based on new knowledge, teams finalize plans

Business Owners assign business value to PI objectives from 1 to 10 (Why wait to do this? Shouldn’t this have been clarified from the
start?)

Program board is updated with all features and cross-team dependencies

https://www.scaledagileframework.com/innovation-and-planning-iteration/
https://www.scaledagileframework.com/innovation-and-planning-iteration/

Consolidate program risks, impediments, and dependencies

RTEs check in hourly for progress

Team PI objectives: The team explains to the Business Owner (concisely and in terms business understands) the essence of the value
implementing this set of features would accomplish.

Stretch objectives: work not officially planned; nice-to-haves or things that are more nebulous

Establish business value: know the percentage of business value delivered in the PI

Program Board (I think this would be a nightmare to implement for Lirio. Everything would be dependent! A Gantt chart would probably
work better. The book has a vignette from the originator of this board: Its purpose is to visualize dependencies, which usually slow things
down.)

Final Plan Review (2 hrs)

Each team talks about
Changes to velocity/load

Final PI objectives with business value

Program risks & impediments

Q&A

Addressing Program Risks and Impediments (1 hr)

(The book doesn’t say how to do this. I guess it’s the same audience as the management review.)

ROAM the risks
Resolved – no longer a risk

Owned – can’t fix it but someone has the ball

Accepted – we can’t avoid it so we’ll deal with it when it happens

Mitigated – reduced impact or delayed

The Commitment (15 mins)

Ask each team how confident they are in completing their work; fist-vote (1 finger = low, 5 fingers = high)

Looking for an average of 3

Management creates a culture that risk-taking and commitment are the norm

Teams commit to do everything reasonable to meet the objectives

If the team learns it can’t meet the objectives, escalate ASAP

Planning Retrospective

Get feedback on how the PI went

Identify next actions and who owns them

Moving Forward and Final Instructions to Teams

RTE and Product syncs up with the teams to affirm team PI objectives

(Hasn’t this already occurred, though?)

Ch 8: Iterating

Overview

Now that the PI is planned, it’s time to start building/delivering

Usually 2 weeks

Goals:
Provide a regular, predictable cadence for teams to product an increment of value

Refine those items previously developed

The Iteration Cycle

This is where we execute PDCA (plan, do, check, adjust). This section covers textbook Scrum.

Planning

Involves refining the details and adjusting the initial iteration plans created during PI planning

Members: PO, Scrum Master, Dev Team

Time: max of 4 hours

Inputs
Team and program PI objectives

Stories from PI planning

Existing backlog stories

Steps
Calculate team capacity

Discuss each story with the PO; get acceptance criteria and estimate
Look at high priority stories first

Talk about implementation options, technical issues, NFRs, dependencies

Keep planning until no capacity left

Create and agree on iteration goals

Commit

Outputs
Backlog with refined and prioritized stories for this iteration

Iteration goals

Commitment
Do everything you say you’d do -or- immediately raise a red flag

Too much: burnout, inflexibility, quality problems

Too little: unpredictability, lack of focus on results

Business commits to not change priorities during the iteration

Think about how you’ll demo during iteration review

Execution

Goal: Completely , , and multiple stories each iterationdefine build test

Use to deliver small increments of working functionality across all architectural layersvertical slices

Tracking Iteration Progress

Scrum board (a.k.a. Big Visible Information Radiator)

Scrum Master role
Facilitating team events

Fostering backlog refinement throughout iteration and PI

Encouraging the team to sound an alarm when iteration or PI objectives may be at risk

Communicating to/from Scrum of Scrums and PO Sync

Fostering the use of Agile software engineering practices

Ensuring defects aren’t pushed to the next iteration

Helping with PI planning

Supporting deployment/release activities

Daily Standup

Format
What did I work on yesterday

What will I do today

What impediments might prevent us from meeting iteration goals

Duration: max of 15 minutes

Use the Scrum board

Goal: Help team members coordinate their work, identify issues, and address dependencies

Meet elsewhere to discuss management reporting or for problem-solving sessions

Iteration Review

Demo your work to get feedback from PO and stakeholders

Triggers: story done, spike done, refactor done, new NFR

Format
State the iteration goals

Walk through the committed stories as a working, tested system

Spike: demo the findings

Reflect on stories not completed and why (uncovers impediments, risks, false assumptions, changing priorities, estimating
issues, over-commitment)

Iteration Retrospective

Led by Scrum Master

Format
What went well?

What didn’t go well?

What can we do better next time?

Building Quality In

Core to SAFe and Lean-Agile; reduce recall, rework, and defect fixing

Software Practices

Continuous integration (CI)
Ideally merge to main several times a day to reduce risk of deferred integration

Minimum: local integration daily

Full system integration 1-2 times per interation

Test first
Think about system behavior before implementing

Techniques: test-driven design (TDD) and behavior-driven design (BDD)

Refactoring
Alter internal structure without changing external behavior

Essential to Agile development as the system changes over time

Pair/mob programming
Multiple devs tackling issues (critical code, legacy code, interface definition, system-level integration)

Pair dev with tester

Collective ownership

Anyone can add functionality, fix bugs, improve designs, or refactor

Don’t rely on the original developer to be always available

One owner is a bottleneck (i.e., delay)

Firmware and Hardware Practices

Model-based systems engineering
Use visual models to describe your system instead of lengthy documents

Focus: requirements, design, analysis, verification

Set-based design
Think up many possible solutions

Continue weighing all possibilities until you gather enough data to narrow down your options

Frequent system integration – find problems sooner

Design verification – consider worst-case analysis of tolerances and performance, failure mode effects analysis (FMEA)

Improving Team Flow with Kanban

Method for visualizing and managing work

Aspects
Work moves through the system in a series of defined states

All work is visualized

Teams agree on WIP limits for each step; change limits to improve flow

Teams adopt policies (e.g., entry/exit criteria for a state, classes of service)

Flow is measured by lead time (request-to-completion) or cycle time (start-to-completion)

Cumulative flow diagram
How much work is in what state over time

Vertical gap between spaces = how much WIP in that state

Horizontal gap between New and Done = lead time

Classes of service
Standard – normal prioritizing

Fixed date – prioritize to meet the deadline

Expedite – high priority (ASAP)

Kanban teams are on the train
When to use: uneven arrival, fast-changing priority, lower value of “what’s getting done this sprint”

They still participate in ceremonies

They still have a role in rough estimation of work

Velocity can help determine throughput for larger planning, roadmapping

Ch 9: Executing the Program Increment

Overview

The is key for delivering value.Agile Release Train (ART)

Made mostly of Agile teams

Exists to build solutions that deliver business benefit

Long-lived, runs continuously

Cross-functional to continuously explore, execute, and release value over the PI

Note: The book covers SAFe 4.5, but at the time of these notes the SAFe website uses SAFe 5, so I’ve adapted the diagrams and descriptions
from the website.

Continuous Delivery Pipeline

Pipeline = workflows, activities, automation

Goal: deliver small batches of new functionality on business demand

Overlapping continuous activities: exploration, integration, deployment

1.

2.

3.

4.

Continuous Exploration

Hypothesize – identify ideas, and the measurements needed to validate them with customers

Collaborate & Research – work with customers and stakeholders to refine the understandings of potential needs

Architect – envision a technological approach that enables quick implementation, delivery, and support of ongoing operations

Synthesize – organize the ideas into a holistic vision, a roadmap, a prioritized program backlog, and supports final alignment during PI
Planning

Continuous Integration

Develop – implement stories and commit the code and components to the trunk
Common practices: features stories, BDD, TDD, version control, built-in quality, application telemetry, threat modeling

Build – create deployable binaries and merge the development branches into the trunk

Common practices: commit often, gated commits (code compiles, tests pass before committing), avoid long-lived branches,
automated tests, security inspection via code analyzers

Test end-to-end – validate the solution
Common practices: test environments look like prod, automate as much testing as possible, relevant and stable test data,
virtualized services to mimic production services, testings NFRs, continuous integration with suppliers

Stage – host and validate the solution in a staging environment before production
Common practices: staging looks like prod, blue/green deploys, system demo to stakeholders

Continuous Deployment

Deploy to production
Common practices: dark launches, feature toggles, automated deploys, selective deployment (e.g., A/B, regional), ability to
recover, blue/green deploys

Verify the solution – make sure the changes operate in production as intended before they are released to customers
Common practices: production testing, automated testing, good test data, testing NFRs

Monitor for problems – monitor and report on any issues that may arise in production
Common practices: full-stack telemetry, visual displays, federated monitoring (dashboards)

Respond and recover – rapidly address any problems that happen during deployment
Common practices: proactive detection, cross-team collaboration, session replay, rollback and fix forward, immutable
infrastructure (manage infra through pipeline), version controlled environments

Release on Demand

Release – deliver the solution to end users, all at once or incrementally
Common practices: dark launch, feature toggle, canary release, release elements that are independent

Stabilize and operate – make sure the solution is working well from a functional and non-functional perspective
Common practices: cross-team collaboration, failover/disaster recovery, continuous security monitoring, consider operational
needs (e.g., high load), monitor NFRs

Measure – quantify whether the newly-released functionality provides the intended value
Common practices: application telemetry, innovation accounting

Learn – decide what should be done with the information gathered and prepare for the next loop through the continuous delivery pipeline
Common practices: Lean startup thinking, value stream mapping to find bottlenecks, relentless improvement

Enabling Continuous Delivery with DevOps

Culture of shared responsibility – ops gets shifted upstream, dev gets shifted downstream; everyone helps deliver

Automation of the CD pipeline – manual processes kill speed, productivity, and safety; you want things that are repeatable, self-
documenting, more secure, more easily automated

Lean flow accelerates value delivery – continuous flow of features to cash; visualize WIP, reduce batch sizes, manage queue lengths

Measurement of everything – real-time telemetry to assess frequent changes

Recovery enables low-risk releases – design for low-risk component/service-based deployability, releasability, and fast recovery;
consider andon chord, roll back, plan for failures, chaos engineering

Enabling Continuous Delivery with Architectural Runway

Architectural runway = having sufficient infrastructure to implement highest-priority features in near-term without excessive redesign
and delay

Enablers features/stories (tech debt, performance improvements) are prioritized to extend the runway

Managing Continuous Delivery with the Program Kanban

Managed by Product

Master backlog of work moving through the phases (idea funnel all the way to complete)

Supporting Continuous Delivery with Program Events

This is about keeping the ART on the tracks

PI Planning

Scrum of Scrums (coordinate ART dependencies) or (is ART progressing); sometimes called the PO Sync ART Sync

System Demo (usually done at Inspect and Adapt)

Prepare for PI Planning

Inspect and Adapt (retro of retros, what changes do we make, what things in the system need changing)

Innovation and Planning Iteration
Comes at the end of the PI (like a sprint after the four delivery sprints)

Innovate and explore; not focused on delivery

Continuous learning

Includes PI planning, backlog refinement

If you’re using this time to complete previous PI work, you have something to fix in your process.

Ch 10: Inspect and Adapt

Overview

Held after the end of each PI

Demonstrate and evaluate the current state of the full solution

Goal: Find improvement items so that every ART improves every PI

Stakeholders: Agile team, RTE, System Architect, Product, Business Owners

Part 1: PI System Demo

Show done in the past PIall the features

More formal, requires more prep

Time-box to 1 hour so you get feedback from your audience

Part 2: Quantitative Measurement

Teams review metrics and trends; typically done by Scrum Masters and RTE

This is a progress report of planned vs. actual value achieved

SAFe prescribes that reliable trains generally operate between 80-100%

Part 3: Retrospective and Problem-Solving Workshop

Retrospective

Identify broader program impediments to address

Keep it limited to a few items to potentially address; usually 30 minutes

Agree at a high level what to implement

Problem-Solving Workshop

Format: structured root-cause analysis to identify origins

Agree on the Problems to Solve

Put together a problem statement – what/when/where/impact

Ex: “We discovered three significant design problems in the October deployment of the new EMV vehicles at the Thrills Amusement
Park. The design flaws cause us to recall the vehicles and invest three months in materials, redesign, and testing. We delivered late,
paid substantial penalties, and lost credibility with the customer.”

Perform Root-Cause Analysis

Identify the Biggest Root Cause

There are often many root causes

Pareto analysis lets you identify which one is most common

Let the team vote on which things are most relevant; summarize findings and assure consensus

Restate the New Problem

…based on the root cause

Brainstorm Solutions

Generate ideas, but don’t debate yet

Combine and mutate ideas

Create Improvement Backlog Items

Vote on up to three potential solutions; these go into the Program Backlog

Ch 11: Large Solution SAFe Overview

Overview

Agile Release Train = team of teams

Solution Train = team of team-of-teams

The Solution Train

Coordinates multiple ARTs and suppliers

Focus on capturing requirements in solution intent

Helpful for compliance, regulations, and standards; some companies may not need all this rigor, though

Roles
Solution Train Engineer (STE) – servant leader and coach; supports and facilitates ARTs and suppliers

Solution Management – represents customer’s overall needs; communicates strategic themes and portfolio vision

Solution Architect/Engineer – defines tech and architecture than connects the solution across trains

Solution Intent

Usually at this scale the cost of failure is high; need more rigor around definitions and validation of system behavior

Solution intent – single source of truth, repo for specs as they become clearer
Compliance – built-in quality, meets industry standards using Lean-Agile development

Model-based Systems Engineering (MBSE) – how emergent requirements and design are developed, documented, maintained

Set-based Design (SBD) – preserve options and defer decisions to the last responsible moment

Capabilities and the Solution Backlog

Capability – higher-level behavior that spans multiple ARTs, often several suppliers
Contains a benefit hypothesis, acceptance criteria, fits within a single PI

Has associated enabler capabilities

Developed, analyzed, and approved using the solution Kanban

Prioritized with other capabilities based on WSJF

Split into features, then user stories

(Note: In Lirio’s current work breakdown structure, I’m not sure where these would fall. The book goes on to describe epics which span
PIs. Our initiatives can span epics.)

Solution Epics

Epics can span multiple PIs

Can arise from splitting portfolio epics

See Ch 14: Lean Portfolio Management

Economic Framework

Designed to permit fast, effective decision-making within the bounds of the broader economic requirements

Lean budgets – moving from project-based, cost-center accounting to a process that deals with long-lived value streams; see Ch 15:
Strategy and Investment Funding

Epic funding and governance – empowered funding comes with the responsibility to communicate any investments that aren’t routine

Decentralized economic decision-making – collaborate broadly to synchronize, but you have Solution Management for Solution
Trains, PMs for ARTs, and POs for teams

Job Sequences Based on Cost of Delay – sequence things based on program and solution Kanban systems; pull using WSJF

Ch 12: Defining Large and Complex Solutions

Overview

High cost of failure = common barrier to Agile adoption (seems to conflict with “working software > comprehensive docs”)

Larger systems often need more records (e.g., trade studies, experiments, rationale for choices)

To manage complexity and intensity…
Solution – products, systems, services

Intent – repository for solution knowledge

Context – ecosystem in which the solution operates

Solution

Set of final products, systems, or services delivered to the external customer or enables the work of an internal value stream

Requires multiple ARTs (i.e., Solution Train), multiple suppliers

Customers interact with the dev team to clarify intent, validation assumptions review progress

Solution Management and Architects help drive development, make scope and priority decisions, manage flow of features,
capabilities, and NFRs in the Solution Kanban

Governance comes from the economic framework from Ch 11: Large Solution SAFe Overview

Solution Intent

Purposes
Provide a single source of truth for behavior

Record requirements, design, and architecture decisions

Facilitate exploration and analysis

Align customers, teams, and suppliers to a common understanding

Support compliance and contractual obligations

Fixed and Variable Solution Intent

Recall principle #3 (assume variability, preserve options) – Ch 4: SAFe Principles

Fixed intent – required or known behaviors

Variable intent – explore tradeoffs and alternatives

Developing Solution Intent

Use MVPs to validate learning (leap/test/measure/pivot)

Collaborating on Solution Intent

Solution Architect / Engineering – high-level system-wide decisions (decomposition, interfaces, subsystem capabilities)

ARTs – take solution behaviors then influence program backlogs

Moving from Variable to Fixed Solution Intent

Unknowns must become knowns over time

System-of-Systems Solution Intent

Intents don’t exist in a vacuum (e.g., suppliers have other customers as well, so if their design changes, their customers are impacted)

Minimum Responsible Documentation

Models > Documents

Keep solution intent collaborative

Keep options open (defer to teams doing the work)

Document in one place

Keep it high-level

Keep it simple; record only what’s needed

Solution Intent Documentation in High-Assurance Environments

Regulated environments may require standards or other technical specs; some have requirements around traceability, decision
decisions, etc.

As long as these exist when they need to (i.e., instead of being all done up front), you can still be Agile yet compliant

Solution Context

Identifies critical aspects of the target solution environment and its impact on usage, installation, operations, support, and even
marketing, packaging, and selling

Customer participates pre- and post-PI planning meetings and solution demos; validate assumptions as often as possible

Solution Context for a System of Systems

Each part of the supply chain delivers its solutions to the customer’s context

Example: navigation supplier info-tainment supplier vehicle manufacturer customer

Solution Context for IT Deployment Environments

Internal customers still require context (interfaces, deployed OSes, firewalls, APIs, cloud infrastructure, etc.)

Solution Context Includes Portfolio-level Concerns

Products and services of a business must work together to accomplish the org’s broader objectives

Solutions are part of a portfolio

Ch 13: Solution Train Execution

Overview

For really big systems, a single ART can’t do the job. This is what Solution Trains are for.

Pre-PI Planning

Establish broader solution context and goals for ART PI planning meetings

Inputs
Solution vision & roadmap

Context from most recent solution demo

Updates to solution intent

Highest priority capabilities from the backlog

Attendees
Solution Train Engineer (STE)

Solution Management

Solution Architect

Reps from other ARTs and suppliers

Goal: Build context to create ART and supplier plans so individual PI planning events are successful
What’s been achieved so far?

Executives match current solution to next desired state, milestones, etc.

Review top capabilities in the backlog

Sketch out next features, dependencies, and potential impacts on the solution

ART PI Planning

This is pretty much the same as , but with the pre-PI planning output as a feeder to this step.Ch 7: Planning a Program Increment

Post PI Planning

Now that the individual ARTs have done some planning, you get everyone back together.

Read-out of individual ARTs, objectives, milestones

Review the plan, talk about risk, and get a confidence vote

Rework plans if needed

Retrospective on how planning went

Outputs
Set of PI objectives

Solution planning board

Frequent Solution Integration

ARTs typically integrate every iteration, but this may be harder with multiple ARTs (multidisciplinary, large, and complex systems)

The more frequent the better, as the longer you wait the more difficult it will be

Solution Train Sync

This is basically Scrum of Scrums; weekly, 60 minutes

Solution Demo

Scheduling is flexible because integration is usually harder; try not to skip this

Solution Train Inspect and Adapt

After every PI, do and I&A workshop (see)Ch 10: Inspect and Adapt

Usually can’t include everyone because solution trains are so large; get the main stakeholders and the RTEs

Take the learnings and put them in the backlog

Ch 14: Lean Portfolio Management

Introduction

Lean Portfolio Management (LPM) – highest level of decision-making and financial accountability for products and solutions in the SAFe
portfolio

Strategy and Investment Funding

Allocate investments to building the right things

See Ch 15: Strategy and Investment Funding

Responsibilities (per SAFe 5)

Connect the portfolio strategy to enterprise strategy – the enterprise needs the portfolio and vice versa

Maintain a portfolio vision
Portfolio vision – future state of value streams and solutions; review quarterly (not one-and-done)

Enterprise architecture – effective technology plans (e.g., tech stacks, interoperability, APIs, hosting, security)

Portfolio roadmap – integrate lower-level (PI) roadmaps into a more comprehensive view; warning: “every long-term
commitment decreases the agility of the organization”

Realize portfolio vision through epics
Epics are more nebulous, so use Portfolio Kanban

Mix business epics and enabler epics

Establish lean budgets and guardrails
Fund value streams, not projects

Guardrails support budgets by providing governance and spending policies/practices

Establish portfolio flow
Big initiatives require collaboration between multiple value streams or ARTs

Limit the number of cross-cutting initiatives, limit WIP, reduce batch sizes, control queue lengths for long-term development
items, monitor capacity

Agile Portfolio Operations

See Ch 16: Agile Portfolio Operations

Move power from the PMO to the ARTs and Solution Trains

Responsibilities

Coordinate value streams – manage dependencies

Support program execution – typically through the Agile Program Management Office (APMO), CoPs around RTEs and STEs, Scrum
Masters

Foster operational excellence – Lean-Agile Center of Excellence (LACE) may be standalone or part of the APMO; has a more this link
thorough list of responsibilities

Lean Governance

Manages spending, audit, compliance, expense forecasting, and measurement

Responsibilities

Forecast and budget dynamically – replace long-range budget cycles; based on cadence as part of the Strategic Portfolio Review or
Participatory Budgeting Events

Measure portfolio performance – SAFe has several recommended metrics

Coordinate continuous compliance – measure continuously instead of yearly or at the end of projects; SAFe also has guidance about
regulatory/industry standards

Ch 15: Strategy and Investment Funding

Introduction

This content overlaps with the section by the same name in , so I won’t repeat that here.Ch 14: Lean Portfolio Management

Issues with Project-Based Accounting

Drives overhead, creates temporary work for temporary people (i.e., people go back to their department silos when done)

At odds with long-lived Agile teams and persistent knowledge acquisition

Admin overhead

Defensive stances about cost overruns for unforeseen technical challenges

Constant personnel reassignments

Projects require multiple budgets to build a single budget – slow and complex, ute-based planning, low program throughput, moves
people to the work

Typically works best when you identify all the work upfront (when the least amount of knowledge exists)

Less agility; what happens if a project half-way through doesn’t pan out?

Innovation cannot happen without risk, technical uncertainty; guards around this (e.g., change control boards) add further delays

Depending on how toxic the environment, things can get political, bonuses are at risk, the numbers get gamed to protect yourself or
blame others

Fund Value Streams

Use a fixed cost per PI

If you plan two features, but only one gets done (with a few more bells and whistles) because it’s the right decision for the business, you’
ve done well.

Benefits
Local empowerment – current backlog and roadmap are where the work lives

Higher throughput and improved morale – because of longer-lived teams

Full control of total spend – PI cost is fixed

Flexibility and agility – trains can flex to the work, focus on where the most value is

Lean Startup Cycle

Hypothesize – lean business case about what the epic will deliver and what value is derived

Build MVP – just enough to reject (or fail to reject) the hypothesis

Evaluate MVP – what are the indicators of success

Pivot or persevere – stop or add new features

Portfolio Kanban

https://www.scaledagileframework.com/lace/
https://www.scaledagileframework.com/metrics/
https://www.scaledagileframework.com/achieving-regulatory-and-industry-standards-compliance-with-safe/
https://www.scaledagileframework.com/achieving-regulatory-and-industry-standards-compliance-with-safe/

Business owners – synchronize priorities

Product and solution management – split epics, prioritize features

RTE – provide guidance for planning and execution by ARTs

Agile Teams – coordinate research activities, help with implementation

Architect – own enabler epics, help with runway, influence best practices and designs

Ch 16: Agile Portfolio Operations

Cast of Characters

Agile Program Management Office (APMO)

Once things get large enough, moving all the work down to the ARTs and Solution Trains requires more coordination

Focuses
Sponsors and communicates the change vision

Participates in the rollout

Leads the move to objective milestones

Helps implement Lean budgets

Fosters Agile contracts and learner supplier/customer partnerships

Provides support for effect program execution

Lean-Agile Center of Excellence (LACE)

May be part of the APMO or a separate entity

Focuses
Communicates the business needs urgency, and vision for change

Develops the implementation plan; manages transformation backlog

Establishes metrics and how they’re communicated

Conducts coaching/training for execs, managers, leaders, teams

Identifies values streams and launches ARTs

Extends Lean-Agile practices to other areas of the company (budgets, portfolios, contracts, HR)

Establishes relentless improvement

(This seems very much like the Software Engineering Process Group from CMMI.)

Even though it doesn’t have individual contributors per se, it operates like an Agile team – has a PO and scrum master, follows cadences

Depending on the size, you can arrange things differently
Centralized – single portfolio, value streams and ARTs under a single budget

Decentralized – local LACEs, independent business units with autonomous SAFe portfolios, cross-business unit collaboration

Hub and spoke – large enterprise, core practices developed and shared, mix of central and local funding

RTE and Scrum Master CoPs

Communities of Practice (CoPs) – organized groups of people with a common interest that collaborate regularly to share, improve, work
on things

(This is what Spotify calls or if slicing by departments.) guilds, chapters

Coordinate Value Streams

Don’t build the same thing twice or confuse the market

Look for reuse of tech and tools

Coordinate and facilitate availability of scarce skillsets or shared services (e.g., security, compliance)

Sharing a cadence allows more regular synchronization

Ch 17: Lean Governance

Forecast and Budget Dynamically

Just because Agile focuses on near-term delivery doesn’t mean that forecasting has no value

Estimation
According to the book (SAFe v4), there’s a huge assumption that epics (they use story points as an example, are of known size
but I’ve seen other companies use hour-ranges). They claim historical data is how you figure this out. Once the above
assumption is made, you look at the velocities of your ARTs and their capacities. At this point, it’s simple math to figure out how
full those buckets can be. SAFe v5 doesn’t seem to offer anything different.

Dynamic budgeting is about ratios of certain types of work (value streams) that may shift PI to PI. Lirio does this retrospectively
by looking at value areas by story point for a given sprint to ensure we’re not lop-sided in one particular area (e.g., compliance).

Measure Portfolio Performance

SAFe has a that can be used to measure performancevast set of metrics

Innovation accounting – “quantifies the market value of new business opportunities that are fundamentally ambiguous and uncertain –
the breakthroughs and disruptors.”

https://www.scaledagileframework.com/metrics/

Capitalization of Agile Software Development

Many US companies are subject to US FASB (Financial Accounting Standards Board) regulations; capitalize software dev costs when a
project/product meets certain criteria. (See your accountant for details.)

Considerably more detail can be found on the SAFe site here

Governance via Agile Contracts

Large systems are rarely built in-house, there are various suppliers

Common approaches
Firm fixed price (most risk to the supplier)

Target price

Cost plus

Time and materials (most risk to the customer)

Phase 1: Pre-commitment
Customer: understand constructs and responsibilities, defines program mission to the supplier

Supplier: analyzes potential feasibility, assures customer that they can deliver on the needs with a rough cost estimate

Shared: establish roadmap and vision, define fixed solution and variable solution, establish economic framework, establish
responsibilities and contract boundaries, prioritize PI 1 backlog, determine MVP

Phase 2: Execution
PI prep

PI planning

PI execution

PI evaluation with I&A event

Both parties trust and verify that they are on the path to the best economic outcomes (long-term benefit to both)

More info from SAFe about Agile contracts

Coordinate Continuous Compliance

Most companies have relied on comprehensive quality management systems (QMS) based on phase-gated development models to
reduce risk and ensure compliance (e.g., ISO 9001, CMMI)

Compliance activities are typically deferred until the end of the project

Lean QMS principles
Build the solution of compliance incrementally

Organize for value and compliance

Build in quality and compliance

Continuously verify and validate

Release validated solutions on demand

Ch 18: The Guiding Coalition

Introduction

From John Kotter’s … “In a rapidly moving world, individuals and weak committees rarely have all the information Leading Change
needed to make good non-routine decisions. Nor do they have the credibility or the time required to convince others to make the
personal sacrifices called for in implementing changes. Only teams with the right composition and sufficient trust among members can
be highly effective under these circumstances.”

Guiding coalition
Leaders who set vision, remove impediments, make blocking the change difficult

Practitioners, managers, and change agents who can implement specific process changes

People with sufficient org credibility to be taken seriously

Expertise and confidence to make fast, smart decisions

Step 1: Reach the Tipping Point

Issues
People naturally resist change

If we’re changing, something must be broken

https://www.scaledagileframework.com/capex-and-opex/
https://www.scaledagileframework.com/agile-contracts/

Our old way we liked is being challenged

Tipping point
Burning platform (easiest) – company can’t compete, way of doing business is inadequate, survival depends on change

Proactive leadership – take a stand for a better state, people don’t see the urgency, management must continuously
communicate reasons why the status quo isn’t acceptable

Establish the vision
Purpose – objective & direction & mission (“why”)

Motivation – compelling reason to change; no job security in status quo

Alignment – empower everyone to take actions to achieve change; no constant supervision

Communicate the benefits
Principle #1 - take an economic view

Examples: quality, time to market, engagement, productivity

Describe objectives to provide the fuel necessary to escape the inertia of the status quo

Step 2: Train Lean-Agile Change Agents

Can be a mix of internal and external people at first

Business, tech leaders, program managers, product owners, process leaders

SAFe has courses (SAFe Program Consultant Certification)

Step 3: Train Executives, Managers, and Leaders

SAFe has courses to teach people Lean-Agile and how to manage knowledge workers

This is about leading rather than following the implementation

Step 4: Create a Lean-Agile Center of Excellence

The LACE is basically a transformation group to help implement SAFe

Seems to have overlaps with the Software Engineering Process Group from CMMI (https://en.wikipedia.org/wiki
)/Software_Engineering_Process_Group

Cross functional (departments)

Led by a C-suite person

Permanent center of excellence for Lean-Agile learnings, communication, relentless improvement

Ch 19: Designing the Implementation

(This continues from the previous steps from .)Ch 18: The Guiding Coalition

Step 5: Identify value streams and ARTs

Agile Release Trains (ARTs) are the people and resources that build solutions that deliver value

Triggers for flow: internal, external

Orgs typically have two types
Operational – delivers value to the customer (define these first)

Development – builds the systems and capabilities that enable operational value streams

Identifying Operational Value Streams

Products, services, solutions to develop or sell

What’s the broader purpose of the org?

Set of questions for stakeholders: https://www.scaledagileframework.com/identify-value-streams-and-arts

Value Stream Definition

https://en.wikipedia.org/wiki/Software_Engineering_Process_Group
https://en.wikipedia.org/wiki/Software_Engineering_Process_Group
https://www.scaledagileframework.com/identify-value-streams-and-arts

What systems support the stream?

Who needs to build/maintain the systems?

Define the development streams

Realize Value Streams with ARTs

50-125 people

Focused on a holistic system

Require long-lived, stable teams to consistently deliver value

Minimal dependencies on other ARTs

If you need more than one ART, you have a Solution Train
Feature ARTs – optimize for flow/speed; need a system architect to maintain integrity

Subsystem ARTs – optimize for architectural robustness and reuse

Some ARTs may be driven by geography or org structure; try not to do this, though

Treat ART design as a hypothesis: balance flow with integrity, keep what works, pivot when needed

Step 6: Create the implementation plan

Small portfolios will have obvious next streams to go after; enterprise-level portfolios will require analysis or leadership to choose

Select the First ART

Criteria:

Leadership support

Clear products/solutions

Collaborating teams

Significant challenge or opportunity

Create a Preliminary Plan for Additional ARTs and Value Streams

Lead by the LACE (Lean Agile Center of Excellence) – I think this is Product at Lirio – which lays out the PI roadmaps of how the
process will come online

Expect change to be resisted at first; nothing is perfect

Ch 20: Implementing Agile Release Trains

(This continues from the previous steps from .)Ch 19: Designing the Implementation

Preparing for the ART Launch

Defining the ART

The ART is a system – people, processes, management

Business owners…
Responsible for business outcomes

Speak to the technical competence and security of the solution now and in the future

Participate in planning, help eliminate impediments, speak on behalf of devs/business/customer

Approve and defend a set of PI plans, knowing nothing is perfect

Help coordinate efforts of the ART with other parts of the org

Setting the Program Cadence and Launch Date

8-12 weeks (prefer shorter) for predictable rhythm and velocity; easier to fit into a calendar

Cadence allows people to plan around known events, book venues, etc.

Make the date real (deadline, planning horizon, sense of urgency, stops over-analysis)

Pick a date based on some milestone (e.g., market window)

If you can’t pick, what’s the cost of delay (is stuff so broken you can’t start?)

Aim to quickly define the backlog, socialize it, get it to a “ready state”

Training the ART Leaders and Stakeholders

If there are people who have never done SAFe, you’ll need to train them on how it works.

(Ideally SAFe would like you to pay for their consultants to come help.) :moneybag:

Organizing the Agile Teams

Feature team – user functionality, fast value delivery, end-to-end value given

Component team – architectural integrity, system robustness, common components, high specialization, NFRs

Most ARTs have a mix, but avoid having one team per layer (e.g., database, UI)

Forming the Agile Teams

Ideally, let people self-organized with a set of minimal constraints between teams

First time, management makes team selections based on objectives, knowledge of individuals

Make a team roster (I’ve done in the past) – team name, roles, members, locationsteam charters

Training Product Owner and Product Managers

POs and PMs steer the train together

(Again, SAFe offers training :moneybag: if you want, but other Agile certs do as well.)

Training the Scrum Masters

Roles: team leadership, improving performance, helping in PI planning, participating in Scrum of Scrums

Assessing and Evolving Launch Readiness

Preparing the Program Backlog

This is mostly needed the first time; you need some place to capture your work (e.g., ADO, Jira)

Train Teams and Launch the ART

Training the Teams

Sure, some may understand Agile/Scrum, but they need to understand the cycles of Agile at scale

Other topics
Agile dev

Agile manifesto

Core Scrum/Scrumban/Kanban/etc.

Backlog management

Benefits of Big-Room Planning

Everyone is there to discuss, make decisions (no excuses of “that team is busy”)

Collective learning activities

Feels like a group effort, not just piecemeal or representatives only

Launch the ART

If this is the first time, SAFe prescribes something (although you may need something different)…

The First PI Planning Session

Build confidence and enthusiasm in the new way of working

Start to build the ART as a team-of-Agile-teams and the social network that it relies on

Teach the teams how they can assume responsibility for planning and delivery

Create full visibility into the mission and current context of the program

Demonstrate the commitment of Lean-Agile Leaders to the SAFe transformation

Coaching ART execution

1.

2.

3.

4.

5.

6.

Implementing SAFe does not make you agile; you need active coaching in the ART to encourage learning and growth. Empower people in their
new way working

Coaching within the ART

Build and maintain the vision and roadmap and program backlog

PMs, system architects, and RTEs

System-level integration

System demo

Scrum of Scrums (or PO/ART sync meetings)

Facilitate Inspect & Adapt events

DevOps culture, CD pipelines

Release management

Training

Coaching the Teams

Help plan, execute, review, and retro the first iterations

Coach new Scrum Masters and POs

Initiate and support Agile software engineering practices

Help establish infrastructure, DevOps, culture of continuous delivery

Encourage and support Communities of Practice (CoPs)

Inspect and Adapt

This lets you know whether what you planned aligned with what you expected

How well is SAFe adoption working?

Ch 22: Sustaining and Improving

Foster Relentless Improvement and the Lean-Agile Mindset

Leadership and relentless improvement are inseparable

Ongoing leadership training

Continuing role of the Lean-Agile Center of Excellence (LACE)
Initially they help get SAFe implemented

Afterward, they continue to feed and improve the system

Communities of Practices
Organize people with different skills around a value stream, subject domain, or area of common interest

(Spotify calls these)guilds

Implement Agile HR Process

Embrace a modern talent contract that acknowledges the need for value, autonomy, and empowerment

Foster continuous engagement with business and technical missions

Hire people for Agile attitude, team orientation, and cultural fit

Eliminate annual performance reviews; use continuous, iterative performance feedback and evaluation

Eliminate demotivating individual financial incentives; pay people enough to take money off the table

Support meaningful, impactful, and continuous learning and growth

Advance Program Execution and Servant Leadership Skills

Targets: Scrum Masters, RTEs

SAFe offers formal training (for a fee)

Measure and Take Action

1.

2.

3.

4.

5.

Ch 10: Inspect and Adapt

Ch 17: Lean Governance

https://www.scaledagileframework.com/metrics/
This also has some self-assessments

Improve Agile Software Engineering Competencies

Use the Innovation and Planning iteration to focus on these topics (e.g., CI, test automation).

Some topics that seem a bit academic or “dressed up for business”
Model-Based Systems Engineering (MBSE)

Set-Based Design (SBD)

Focus on Agile Architecture

Big Up-Front Design (BFUD) doesn’t work anymore; you have to change the engine while you’re driving

Agile Architecture Center of Practice topics
Review SAFe principles of Agile architecture

Identify enabler epics and capabilities needed to evolve the solution architecture

Identify methods of splitting architectural epics into enabler capabilities and features for incremental implementation

Establish the decision-making framework and policies for architectural governance and capacity allocation

Identify relevant NFRs

Improve DevOps and CD Capability

Once ARTs are launched, value streams operate better and bottlenecks/impediments become more obvious

See and other DevOps practices; CoPs can help with ownership as wellCh 9: Executing the Program Increment

Reduce Time-to-Market with Value Stream Mapping

Each value stream provides an identifiable and measurable flow of value to the customer

Here’s how to do it: (I think this is the feedback loop from Eliyahu Goldratt’s from 1984!)The Goal

From request to release…. map all steps, value-added times, hand-offs, delays

Identify the most frequent sources of delays and hand-offs in the system

Find the biggest delay, then use root-cause analysis. Backlog a solution to this.

Implement the backlog items.

Measure again, then repeat the process.

Ch 21: Launching More ARTs and Value Streams

Introduction

(This continues from the previous step of .)Ch 20: Implementing Agile Release Trains

Launch More ARTs and Value Streams

Launch More ARTs

LACE and other stakeholders repeat the same steps they used to launch existing ARTs (prepare, train teams, coach)

Use the same care as you did the first time; don’t fall into the “everyone knows how to do this now” mindset

Implement Large Solution Roles, Artifacts, and Events

Solution train coordinates ARTs

See the chapters on Large Solution SAFe for specifics

Launch More Value Streams

https://www.scaledagileframework.com/metrics/

What’s likely changed… businesses, operating units, countries, chains of command

Look at each value stream and see where to build the ART (see)Ch 20: Implementing Agile Release Trains

Follow principle #6 (see) about visualizing WIPCh 4: SAFe Principles

The SAFe Implementation Railway

See case study from Northwestern Mutual: https://www.scaledagileframework.com/launch-more-arts-and-value-streams/

Extend to the Portfolio

Legacy challenges
Demand > capacity

Project-based funding, cost-accounting friction, and overhead

No understanding of how to capitalize expenses in an Agile business

Overly detailed business cases based on speculative, lagging ROI projections

Strangulation by the iron triangle (scope, cost, time)

Traditional supplier management coordination (lowest cost > highest life-cycle)

Phase-gated approval processes that discourage incremental delivery

Align value streams to the enterprise strategy

Establish enterprise value flow – need epic owners and enterprise architecture

Implement lean financial management (see)Ch 17: Lean Governance

Agile portfolio demand to capacity and agile forecasting – a system operating in a state of overload will deliver far less

Evolve leaner and more objective governance practices

Foster a learner approach to supplier and customer relationships

https://www.scaledagileframework.com/launch-more-arts-and-value-streams/

	SAFe Distilled
	Ch 1: Business Need for SAFe
	Ch 2: SAFe Overview
	Ch 3: Lean-Agile Mindset
	Ch 4: SAFe Principles
	Ch 5: Lean-Agile Leaders
	Ch 6: The Agile Release Train
	Ch 7: Planning a Program Increment
	Ch 8: Iterating
	Ch 9: Executing the Program Increment
	Ch 10: Inspect and Adapt
	Ch 11: Large Solution SAFe Overview
	Ch 12: Defining Large and Complex Solutions
	Ch 13: Solution Train Execution
	Ch 14: Lean Portfolio Management
	Ch 15: Strategy and Investment Funding
	Ch 16: Agile Portfolio Operations
	Ch 17: Lean Governance
	Ch 18: The Guiding Coalition
	Ch 19: Designing the Implementation
	Ch 20: Implementing Agile Release Trains
	Ch 22: Sustaining and Improving
	Ch 21: Launching More ARTs and Value Streams

